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Abstract . Cozepmarme o Streszczenie

The paper presents a method of mathematically supported correct
progra;ming. Totally correct programs are developed be means of
transformation rules. These Programs are considered and transformed
together with their specifications. The specifications are of two
types: global (pre- andppcst- conditions) and local (redundant
tests). The transformations always preserve the total correctness
of programs and are rather flexible; e.g. one may add or remove
variables in the program or switch from one data type to another.

flporpaMuupoBaEse O cuenufEramuei

B pagoTe HSIAraeTCHA MATEMATHYES KUil MGTOX BHBOZA NONHOCTHD KODDEKTHEX

nporpauy. MeToZ OCHOBAH HA4 NPABEJAX IPe0GPa30BAHEA, KOTODHE NPUMCHS-

WTCH K MPOrpaMMaM co cnelufuxanuaMu. [IpaBuia TAKOBH, UTO X NPHMEHE-

HUNE COXDAHAGT CBOACTBO MOIHOE KOPPEXTHOCTH MPE0oODA3yeMOil MporpaMuu
¢0 cneumpuranuei, MeToz ZomyckaeT xBA THNA CHenupuramuil 3a7aBRAGMHY
BMECTE C IpOrpaMMaMy: riyoCanbHHe (pre- ¥ post - yoNoBMA) E 0~

KanbHHE (peIyHAAHTHNE TecTH), [IpABWIA AT pPasHOOOpA3HEHE BO3MORHOC—

TH NPEOOpa30BAEMA NDOIDAMM, EANPUMED BBEAGHEE HOBHX IEDEMEHHNY B
IpOTPaMMY, yCTDAHCHUE HEDPEMEHHHX M3 NPOTDAMMH, N8PeXoX oT ommoi
CTPYETYDH IAaHRHX E Apyrol m zmp. '




Programowanie ze sgpecyfikacjg

W pracy przedstawiono matematyczng metode wyprowadzania programéw po-
prawnych. Metoda operuje reguiami transformacji stosowanymi do pro-
gramdéw wraz ze spécyfikacja i zachowujgcymi caikowita.poprawnoéé pro-
gramdw. Stosowane s3a dwa typy specyfikacji programdéw: globalne (pre-
i post- warunki) oraz lokalne (redundantne testy). Reguly transfor-
macji pozwalaja na dokonywanie réinorodnych przeksztakced programéw,
np. dodawanie lub usuwanie zmiennych czy przechodzenia od jedne}
struktury danych do drugiej.
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1. INTRODUCTION

This paper concerns the technique of mathematically supported correct
programming (correct program derivation). We are dealing here with
programs extended by input-output specifications. Such programs are
called specified programs and are of the syntactical form

pre c1; IN post c2
where IN is the operational part (the instruction) and C,+C, are con-
ditions called respectively the precondition and the postcondition.
A specified program is called correct if IN is totally correct with
respect to ¢, and C,-

The method which is sketched in this paper provides a mathematical tech-
nique of the derivation of correct specified programs. Starting from
some initial correct specified program {whose correctness must be
proved) we apply transformation rules which produce only correct prog-
rams. In this way the correctness of each successive refinement of the
initial program is guaranted by the method and needs not to be proved

in each step separately. In general, our transformations change not
only the Operational part IN of the program, but also the specifica-




tion ©q+Cy. This gives the necessary flexibility of transformation
rules. For instance we may easily add and remove variables in the
program or switch from one data type to another. The latter option is
especially useful in programming with abstract data types (Liskov and
Zilles 1975 and Meertens 1976). '

The described method is neither a formalized axiomatic system of deri-
vation rules nor it offers a list of magic heuristic techniques. In-

stead, it is supposed to provide mathematical tools which may be used

by a programmer as the support - but not the alternative - of his

‘intuitive experience. The core of the method consists of a pseudo-
-programming language and of a set of transformation rules. The seman-—
tics of the language 1is given a denotational description and each

transformation rule is supplied witﬂ a soundness theorem.

The description of the method given in this paper should be regarded

as preliminary and very incomplete. We are trying to-explain the main
general ideas and tc show the examples of some concrete transforma=-
tions. It is understood that any practical application of the method

reguires a more technical extension. For more comments see Sec.9.

Due to space limitation the proofs of theorems were omitted.

The concept of programming by refinement rules is a particular reali-
zation of the idea of structured programming (Dijkstra 1968, 72). For
several years structured programming has been understood as philoso=-
phy of progranﬁning providing lucid and easily provable programs. Re=
cently it started to evoluate towards a systematic method of program-—
ming by transformations. Some authors, such as Bar (1977) ,Burstal and
Darlington (1977), Darlington (1975, 76), Dijkstra (1975), Sinzoff
(1977) , Spitzen, Levitt and Lawrence (1976), Wegbreit (1976} describe
the transformations as heuristic or only syntactical operations. In
this case the correctness of each program’s refinement must be proved
separately. Other authors, like Dershowitz and Manna (1975), van Em-
den (1975, 76), Irlik (1976,78), Blikle (1977 A,B) suggest that prog-
ram transformations formally guarantee the correctness of all succes-—
sive versions of the derived program. Regarding the idea of dealing
with specified programs it was described explicitly by Dershowitz and
Manna (1975) and B&r (1977) and implicitly by van Emden (1975,76). In
contrast to the present approach those methods quarantee that the de-
rived programs are only partially ccrrect. BAlso the techniques of
program development and refinement are different from ours. The pre~
sent paper is a continuation of Blikle (1977 A,B).




2. ABSTRACT PROGRAMMING LANGUAGE

.The general description of our method should not be restricted to any

fixed programming language. On the other hand, we have to deal with

some language since otherwise we cannot talk about program transfor-—
mations. As a compromise we introduce below’ the concept of an abstract
pProgramming language which represents the class of Programming langua—

'ges to which our method (in its present form) may be applied. This

concept does not pretend to universality or completeness. It hass been
chosen rather ad hoc, just for the sake of this paper.

Formally, the abstract programming language (abbreviated apl which
must not be confused with APL) is; of course, a 273- —tuple consisting
of several syntactical and semantical objects. We shall describe these

objects successively leaving the tupling operation to our more rigo=-
rous readers.

The basic component in the definition of apl is the abstract data
type. This is an abstract algebra DT = (D,f1,...,fn,q1,...,qm} where

i b.
D is a nonempty set (the carier) and fi:D SR IDfE q.:D dere

—> {true, falsel are partial functions. a; and b are integers -
the arities of f. and q respectively. Since f and q are partial,

D may be regarded as the union of different data types such as inte-
gers, reals, lists, records, sets etc. In this way DT represents a
class of data types. We shall assume that one of qj's represents the
identity relation in D. This relation will be denoted by =

Important remark. In the applications DT is a concrete algebya but it

still may contain abstract (i.e. not implemented and not intended for
implementation) data types (Liskov and Zilles 1975) . The same concerns
the syntax of the language which is defined below. We assume that each
concrete representation of apl will contain only a small implementable
subset. Beside this subset we have in apl data types and programming
constructions chosen entirely for the sake of compact and lucid
description of algorithms. Programs written initially in these non=-
implementable terms are next systematically transformed into imple-
mentable programs. |

Given DT we establish the syntactical components of apl. First we
assume that with each £, and a5 there are associated symbols Fy and
Qj respectively. For 51mp11c1ty, "=" will denote both, the 1dentity

in D and the corresponding predicate Symbol. Next we assume to have




~in apl an infinite set IDE of symbols called identifiers. Having this
we define the set EXP of expressions and CON of conditions over DT: .

EXP is the set of terms (in the usual sense) over the set of functic-
nal symbols Fl""'Fn and the set of variables IDE. For instance,
HyrXppeens FT(X1""'xai}' F1(F2(x1,...,xa2),...), etc. are expres-,

sions.

CON is the set of first order formulas (in the usual sense) over the
set of predicate symbols Q1,...,Qm and the set of expressions EXP, For
instance, if E1,E2,... are expressions, then Qj(E1""'Eb Yoo

: 3

r T s 2
Vx13x2Qj(E1,...,Ebj)& Qk(El""'Ebk)’ etc. are conditions.

Remark. In the applications - hence also in our examples - we shall
identify the symbols Fi with fi and Qj with qj and allow the infix
notation. Typical expressions are therefore x + ¢§_, (x+y) ez,

max{k ]k<2n}, etc. and typical conditions are x=y, x<2Y, (3y)(x=2y),

etc. E]

The main syntactical class in apl is the class INS of instructions.
We assume that INS is the least set of words (a.formal language)
which satisfies the following axioms: ;
(1) - abort and skip are instructions,
Sralie Xyrew-,X, are mutually different identifiers, EjreeosE

n n

are arbitrary expressions and c is a condition, then
1F eafl oy x1 = E1 " si Xq:= E1 &iand X = B is
are instructions.

(2) 1if c is a condition and IN1, IN2 are instructions, then

IN,;IN, while c do IN, od
if c then IN1 £i inv c; IN wni c

if c then IN, else IN, fi

are instructions.

The instructions of the form if c fi are called tests. The instruc-
tions inv ¢; IN ¥ni ¢ are called invariant-guarded instructions

and were introduced by Blikle (1977 A,B) in the syntactical form
begin c¢3 IN end c. This earlier syntax was confusing since the use of

the words begin and end may suggest a block-like structure {in the
ALGOL sense) which does not apply in our case. The pair of words
inv ¢ and vni ¢ is called the declaration of the invariant c.
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The last syntactical class in apl is the class of specified programs
cf the form

pre g1; IN post c2 251
where ©; and C, are conditions called respectively the precondition
and the postcondition of (2.1) and IN is the instruction of 255
It should be emphasised that specified programs are in fact statements
about programs. In (2.1) only IN is executable, whereas the pair e
C, constitutes the input-output specification of IN.

In order to define the semantics of apl we first introduce a few ba-
sic concepts. By a state we shall mean any total function

S : IDE — D. The fact that ‘states are total means that the identi-
flers represent global variables (see Sec.9 for comments). By S we
shall denote the set of all states, hence § = [IDE —» D]. For an
arbitrary set V < IDE of identifiers and arbitrary states_s1,szes
we shall say that 51 and s, are equal out of V, in symbols >
/sy = s, outof V, if 51(x) = s,(x) for S;ﬁ V.

By Int we denote the function of interpretation defined in EXP U CON

in the way usual for mathematical logic. Therefore

Int:EKP—-’-[S—*D}
Int : CON — [S — {true, falsel].

For instance, Int(x)(s) = s(x), Int(Fi(xT,...,xa )) (s) =
i

fi(s(x1),...,s(xa )), ect. In the sequel we shall write Int(E) (s) =

e
= 1 as a shorthand of (3d€D) (Int(E) (s)=d), which means that the value
of Int(E) in s is defined, and we shall write Int(E)(s) = ? - if the
value of Int(E) in s is undefined.

By Rel(S) we denote the set of binary relations in S. If R1,R2
€ Rel({S), then R R, denotesthe usual composition of R, and R,,

R1 u R2 denotes the set-theoretical union and RY = ROU R1 U R2 (B

denotes the iteration of R. Moreover, @ will denote the empty rela-
tion (and the empty set as well) and I = {(s,s) |sE8} the identity
relation in S. For more details see Blikle (1977 B,C,D).

The main semantical concept in apl is the function of semantics

which maps the set INSUCON into Rel (5). We denote this function by
square brackets [ ], thus for any ccCON and INEINS we have [c],[IN]e
ERel(S). Since in the present version of apl all instructions are de-

terministic, all [IN] are functions. However, we define the semantics
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of apl in a more general - relational - framework since the definition
of semantics and the program verification methods become much simpler
if described for this general case. The definition of [ ] is the follo®
wing: = !

(1) For any condition c we set [c] = {(s,s)|1nt(c)(s)=true}. Can-
sequently f[eleI.

(2) In the set INS the function of semantics is defined recursive-
le wrt the syntactical definition of this set:

[abort] = @ , [skip]l = I , [if ¢ £i] = [e]

[si X1:=E1&...&xn:=E is] =

= {(51,32}[(vi§n)(Int(Ei)(s1)=! & sztxi}=lnt(Ei)(s1))&
& 52=s1gg§g£{x1,...,xn}.
[x1:=E] = [si %, :=E is]
[IN,;IN, ] = [IN,][IN,]

[if ¢ then IN fi]={c][IN]JU[ ~c] :
[if ¢ then IN1 else in, fi] = [c]{IN1]U[«uc}[IN2}
[while ¢ do IN od] = ([e][IN])*[ ~c]

The case of inv c; IN voi ¢ is more complicated. Intuitively speaking
to execute this instruction means to execute IN in checking simulta-
neously whether the successive states, including the ini£¢al and the
terminal, satisfy c. If this is the case, then the execution continues.
Otherwise the execution aborts. The condition ¢ is therefore called
the guarding invariant (cf. Dijkstra’'s (1975) guarded commands). Simi-
lar constructions appear also, although in a restricted version, in
other languages. Forinstance, type specifications like integer x,
array =z, etec. are such guarding invariants in ALGOL blocks. In apl we

may use more sophisticated invariants, e.g. y=n—x2 & p=xz (see Sec.7).
The formal semantics of the instruction inv c; IN vni ¢ is recursive:
{inv c; abort vni ¢] = @ -
[inv c; skip vni c] = [e]
([inv_ ¢; si %,:=E; &...& X o=k d8 yni ] =

=[c]lsi x,:=E, &...& x_:=E_ is]{c]

n n
linv e; if ¢, fi vni c] = [ec]lle,]
[inv c; IN,3;IN, vni c] = [inv ¢: IN, vni cllinv c; IN, vni c]
liny ¢3 if c, then IN fi yni <J = [if €4y then inv c;IN vni ¢ fi]

[inv c; if ¢, then IN, else IN, £fi vni ¢] =
= [if ¢, then inv c; IN, wni c else inv c; IN, vni c fi]
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[inv c; while ©; do IN od wni cl = [while ¢; do inv ¢; IN vni c od]

[inv ¢; inw ¢q7 IN vni ¢, vni cl = [inv c&c,; IN wni c&c11

" In the sequel, for any instruction IN the relation [IN] will be called
the resuiting relation of IN. Two instructions IN1 and IN2 will be
called equivalent, if [INT] = IIN2]-

Since the specified programs are statements about instructions, their
semantical meaning reduces to the truth values. This is formalize in

the next section.

3. CORRECTNESS AND REDUNDANCY OF SPECIFIED PROGRAMS

We shall need in this section a few farther technical concepts. First
we extend the composition in Rel(8) to the case where one of the arqu-
ments is a set. Let R§Rel(S) and BesS:

BR 7—--l{5“g i(asl?(s;EB FAslkszy}, RB = {s, I(Esz)(s1ﬂsz & 5,€B)}.
" If R = [IN], for some IN, then B[IN] is the set of all outputs gene-

rated by IN from the inputs of B and [IN]B is the set of these inputs
which generate outputs in B. For more details see Blikle (1977 B,D).

With every condition c we associate the set of states denoted by {c}
and defined as follows:

{c} = {s | Int(e)(s) = true}.

For instance {x1<x2} = {s |s(x1) < s(xz)}. Since the predicates
q1,...,qm in DT are partial (Sec.2) all conditions are partial as well.
This means that in general the set {c} U {~c} is a proper subset of 3.
For instance, if " < " denotes the orderihg‘in the set REAL of reals,
the {x1<x2}u{325x1} = {s | s{x)), s(x,) € REAL}.

The specified program pre c.; IN post cy is called correct if
{c1} = [IN]{cz}.

This definition coincides exactly with the Floyd-Hoare total correct-
ness (see Blikle 1977 D ).

Each transformation rule is restricted to a class of programs which
satisfy certain properties. Some of these properties are global, i.e.
follow from the specification <4 and cy but some others are local. 2
typical local property says that a given condition ¢ is satisfied at
a given cut-point. In order to express such properties we introduce
the concept of a redundant test and of a redundant invariant's decla-
ration. Two technical concepts are required in the definition.
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Let W,X,%Z,Y be words over an arbitrary alphabet V. We say that W oc-
curs in 2 in the context (X,¥) if Z.= XWY. The ordered triple (X,W,Y)
will be called the occurence of W in Z.

Now, consider arbitrary conditions c and F and arbitrary instructions
IN and IN,. Let 3if ¢ fi occur in IN in the context (X,Y), i:e. let.
IN = X if ¢ f£i Y. We say that this occurence of if ¢ £i 4in IN is:

redundant under the precondition c, if

e 3lIN] = [c 1% skip ¥]
Intuitively this means that if we precede IN by the test (precondi-
tion) if e, fi, then we may remove the test if ¢ £fi from IN and the
new instructicn will have the same resulting relation as the former.
In other words, all the executions of IN which satisfy ¢, at the be-
ginning and which terminate must satisfy the occurence of Aftes 81 0in
the contect (X,¥).

Let inv ¢; IN1 vni c occur in IN in the context (X,¥), i.e. let IN =
= X inv c3; IN1 vni ¢ Y. We say that the invariant's declaration in

this context is redundant under the precondition cq if

le,1lIN] = [c13[x N, ¥].

The interpretation is the same as above.

LEMMA 3.1 Let pre c.; IN post = be arbitrary specified program and
let IN' denote the instruction which results in from IN by the remo-
val of any number of occurences of test and/or declarations of in-
variants which are redundant under the precondition Cqe The specified
program pre c,; IN' post ¢, is correct iff the specified program

pre c¢q; IN post ¢, is correct. O

Intuitively this lemma says that redundant tests and redundant inva-
riant's declarations are operationally useless in the program. This,
in turn, means that they may be regarded as the specifications. of
local program's properties. The specified program pre c¢;; IN post c,
is called redundant if all the occurences of tests and invariant's

e
declarations in IN are redundant under the precondition Cq-

4. HOARE-TYPE TRANSFORMATIONS OF SPECIFIED PROGRAMS

Hoare's rules for proving total correctness of programs may be regar-
ded as correctness preserving transformations of specified programs.
Below we give the examples of two such transformations which we shall

use in the sequel of this paper.
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LEMMA 4.1 If pre €+ IN post <5 is correct and if c:3==>-<:,i and
c£=:>c4, then pre c3; IN post Cy is also correct.: Moreover, if the
former program is redundant, then the latter is redundant as well. []

LEMMA 4,2 If the prggrams Pre cg; IN1 post ¢, and pre Cqi IN2 post ¢,
are correct and C,=> C,, then

Pre c.; IN,; if c, fi ; IN, post ey
and pPre cq: IN1; if S5 £ IN2 POSt Cy

are also correct. Moreover, if the initial programs are redundant,

Ha

then the resulting programs are redundant as well. j]

5. THE INSERTION OF NEW VARIABLES INTO PROGRAMS

The transformations of the Eype describ@d in Sec.4 do not change
the set of variables of the transformed program. In this section we
define the transformation - described earlier by Blikle .

(IO IC AL B) Anta slightly different way - which allows the addition
(and the removal} of variables into (from) programs. This transfor-
mation concerns a rather particular case where the value of the new

variable y is related to the value of the old variables KipeeonX

n
by the equation of the form y=E where E is an expression which does
not contain y. As was shown by Blikle (1977 A,B) , see also Sec.7,

this transformation is useful 'in program optimisation. In Sec.8 we
show that it also provides a very natural instrument for the trans-
formation of programs from one data-type into another.

In order to describe the syntax of our transformation we define the
syntactical function INSERT(y=E, IN) which, given an instruction IN
an expression E and an identifier Y as arguments, yields a new ins-
tructioﬁ IN1. The function INSERT will be defined by cases wrt the
syntaxt of IN. We start by the case, where IN is the simultanecus
assignment si Xyi=Eg&. .8 ¥,:=E is. Three subcases are to be consi-
dered:

(1) if y E'{x1,;..,xn}, then INSERT(y=E,IN) is undefined,
(2) if y £ {x1,...}xn} and no ¥y occurs in E, then
INSERT (y=E, IN) = IN, : 2

(3) if y £ {x,,..
INSERT (y=E, IN) is of the form

.,xn} and at least one x, occurs in E, then

i .= o= .= 7
S% Xy:=E, &...8 X TE & y: E(x1/Eﬁ,...,xn,En} is

1
where E(x1/E1,...,xn/En) denotes the effect of the simultanecus sub-
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stitution of Ei for each occurence of xy in B for i=l,...,n. In the

applications, where we allow infix notation, substitution may regquire
the addition of parentheses. We shall add these parentheses whenever
required. E.g. the substitution of x+y for z in zx results in (xty)x.

The case where IN is of the form x1:=E1 is analogous to the former
since it may be considered as the case of si x,:=E, is. In all the'
remaining cases INSERT(y=E, IN) is the effect of the insertion of

y=E into all simultaneous and simple assignment statements in IN. For
the formal definition see Blikle (1977 B).

Now, consider an arbitrary instruction IN and let the instruction
dfoc il mt Inwic s AN evnd Ge! (5.1:) e,

occur in IN. Let for y€IDE and EE€EXP the instruction IN1 results in
from IN by the substitution of the instruction

4f oy

y:=E; :

inv ¢' & y=E;

INSERT (y=E, IN')

vni ¢' & y=E ]
for some chosen occurence of (5.1) in IN. The step from IN to IN1 des-
cribes the transformation which adds new variable y to IN. The value
of this variable is kept egual to the value of E during the whole exe-
cution of IN'. In order to describe the soundness of this transfor-

mation one more concept is needed.

Let E be an expression. By the domain of E, in symbols Dom E, we mean

the set of states in which E may be evaluated (has a value). Formal-

ly Dom E = {s | Int(E)(s) =!}. If c is a condition, then the inclusion

{c} € Dom E means that for any state which satisfies c, the value

of E is defined. i s s

THEOREM 5.1 Let ¢, and ¢, be arbitrary conditions. If y does not occur
in ¢, and IN and if {c} U {c'} < Dom E, then the program

pre cg; IN post c, (552)
is correct iff the program :
pre cqi IN1 post c, & y=E (5:3)
is correct. Moreover (5.3) is redundant iff (5.2) is redundant. O

The occurence of the test if c fi and the declaration inv ¢' , vni c'
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in (5.1) is a technical trick which allows the description of the fact
that y:=E may be executed before entering IN' ({c} < Dom E) and that

© it may be executed in each step of the execution of IN ({c'} < pom E).

6. EXHAUSTING PROGRAMS

The process 6f program derivation may be described by the sequence
P1,P2,...,Pn of successive refinements of some initially given prog-
‘ram (or program specification) P1‘ So far we have been dealing w1th
the refinement transformations allowing the steps P1——+ Piq for iz1.
Here we shall concentrate on the problem of establishing the initial
program Pl. Of course, the way in which we establish P, cannot be for-
malized since in this step we describe our intuitive understandlng of
P1. Hoﬂevgr, one may suggest to have P1 in some particular form.

- For instance, Burstal and Darlington (1977) suggest that P1 be given
a4s a recursive procedure. In this section we shall discussed another
solution. Anticipating usual arguments it should be stressed that
this solution is not considered by the author as unique, universal or
better than any other. This is just another solution which may deserve
the attention of the reader. We exp;ain it first on the example.

Consider two correct specified programs:

P : pre integer n & n z 1; . P' : pre integer n,m & n,m 2 1;
: X:=0; - ; X:=0;
while (x+1)%sn do x:=x+1 od; while (x+1)msn do x:=x+1 od;
Eggg x=intsgr(n) : Eggg X=n+m

where integer n is a condition which is satisfied if the value of
n is an integer, intsgr(n) denotes the integer square root of n and
nim denotes the integer quotient of n and m. These programs compute
different.values but they are searching for these values in exactly
the same way: starting from O and proceeding through successive po-
sitive integers. This suggests that both P and P' may be derived from
the same program which describes that way of searching. We shall show
that this is the case. Consider the specified program

Py ¢ pre integer k & k 2 1

X:=0; :
while x+1sk do x:=x+1 od;
post x=k

which is, of course, correct. Both P and P' may be derived from P1.
We shall show this for P. The other case is analogous. Some steps in

the derivation below are described informally but they can easily be
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formalized by everybody familiar with program verification technigues.
First observe that the condition integer n & n 2 1 & n=intsgr (k) im-

plies the conditien integer k'& kz1. Therefore, on the strength of
Lemma 4.1 we may derive from P1 the following program

P, : pre integer n & nzl & k=intsgr(n);-

x:=Q;
while x+1sck do x:=x+1 od
post x=k

which is also correct. Since k and n are constant in this program and
since k=intsgr(n) occurs in the precondition, we may replace k in the
instruction of the program and in the postcondition by intsgr(n):

Py : pre integer n & nz1 & k=intsgr (n)
X:=035 -
while x+1sintsgr(n) do x:=x+1 od
post x=intsqgr(n)

Now we use the arithmetical fact that for nz1, the condition x+1<

£ intsgr(n) is eguivalent to (x+1)2 S n. We replace the former con-
dition in P, by the latter and we remove the condition k=intsgr (n)
from the precondition since k does not appear neither in the instruc-
tion nor in the postcondition. In this way we get the required prog-

ram P.

Observe, that our programs P and P' are rather slow. This, of course,
is the consequence of the fact that the initial program P1 is slow.
If we replace P1 by faster program (sec.7), then we get faster prog-
rams computing intsgr(n) and nim respectively. On the other hand, we
cannot expect to speed up P and P' too much otherwise. This example
shows that in the derivation of at least some programs it may be ad-
visable to make a careful choige of. the basic "P1—1ike“ program. In
making this choice we may forget, for a moment, about the function
which our target program is supposed to compute, concentrating on the
pure searching method in the set .where the values of this function

belong.

Now we can formalize and generalize the concept of "P.-like" prograj.
Suppose that we are going to derive a program computing a certain
function h:D —2, where A<D (see Sec.2 for D). According to our

earlier remarks we begin by establishing a program of the form

pre achAj; IN post x=a
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where a does not occur in the assignments of IN (it may occur in con-
dltlons) The total correctness of this program means that its instruc-—

- tion may "reconstruct” or "retriev" each element of A. Totally correct
~ programs. of this form will be called exhausting programs for A.

7. AN EXAMPLE OF PROGRAM DERIVATION AND REFINEMENT

This section is devoted to the systematic derivation of an efficient

and rather tricky program (known to ‘the author from J.0.Dahl) compu-
ting the.integer square root of a positive integer. In Sec.8 we trans-—
form this program into an analcgous one over the data type of binary
strings. The same program was already investigated by Blikle (1977 B) .
Thc present version corresponds to the new setting of the method.

il 3
First we shall assume that ocur data typé contains everything which we
may need in the sequel: integer arithmetics, set theory, binary

' strings etc. We do not need to care about the size and complexity of

this data type since we are not going to implement all its subsets
(cf. the remarks of Sec.2). We shall start our programming by estab-
lishing a fast program exhausting the set of positive integers.

Let INT denote the set of positive integers, let integer k be the con-
dition defined as. in Sec.6 and let B = {20 |m=0,1,...}. We begin by
a few general mathematical observations about integers.

(1) For every positive integer k there exists a unigue integer
YEB such that y £ k < 2y. This integer will be called the magnitude
of k and will be denoted by mag(k) .

(2) If y=mag(k), then there exist a unique string aO’aTTf"'alog(y)

of O's and 1's, called the binary representation of k such that

log(y) i &
k=z (y=27)a .
i=0 LE L :
(3) The string defined in (2) bas the following property: a0=1
and for any i = 13eae, Log(y)
x S et
a, =1 iff Z(yzj)a £ ter2h) = k.
= T =0

Starting from these cobservations we can easily construct the following
programs and prove them correct and redundant (the proofs may be
caried out by any of the well-known metheds and are left to the rea-
der):




- Py pre integer k & k z 13
z:=1;
inv zeB;
while zsmag(k) do z:=2z od:
‘wni zeB; ,
post integer k & k 2 1 & z=2mag (k)

5i pre integer k&k =z 1 & z=2mag(k);
x:=03 : ' ”

while z>1 do z:=2:2; if x+z < k then x:=x+z fi od

post x=k & z=

Remark. The reader may wonder why have we chosen P1 in such a way that
it computes 2mag(k) rather than simply mag(k). The reason is purelly
technical - in this case we get z=1 at the output of P2 which allows
later on (in P, to P7] a nice optimization of our program. O

Within the scope of the invariant z€B the condition z s mag(k) is

equivalent to-z £ k. Therefore, it may be replaced by that condition
in P1 (for the formal description of such transformations see Sec.6
of Blikle 1977 B). Now, we combine P, with P, by Lemma 4.2 and we

omit the redundant test by Lemma 3.1 We get,

P3: pre integer k & k 2 1;
Ze=13

while zsk do z:=2z od;

x:=03
while 2>1 do 2z:=z:2; if x+zgk then x:=x+z fi od
post x=k & z=1 '

This is the exhausting program for the set of positive integers which
we wanted to construct. It is of course much faster than the program
of Sec.6. While the latter computes k in polynomial time, the Fformer
uses only a logaritbmic amount of time. The explanation of both algo-
rithms is shown below.

P1 of Sec.6 Ay s MRS LI S A D R o T | [ o S
Py of Sec.7 \\'//

Sy

LRy A
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Now, similarly as in Sec.6 we may transform P, into a program compu~
ting the function intsgr (n). Replacing in one step zsintsqgr(n) by
zzgn and x+zsintsqr(n) by (n+z)2§n we get

Py: pre integer n & n z 1;
23=1;
while 22 s n do z:=2z2 od;
X:=0;
while 2>1 do zi=z%2 ; if (x+z)2; n then x:=x+z fi od

post x=intsgr(n)_& z=1

In the subseguent steps we shall optlmlze this program using the tran-
sformation described in Theorem 5.1 as the main technique. First ob-
serve that P4 computes the value of 22 }n each execution of both loops:
This is certainly nonoptimal. We may improve the program introducing
new variable g with guarding invariant q=z2. For the formal applica~
tion of Theorem 5.1 we need that in P, the statement z:=1 be followed
by if integer z £i and the remaining part be closed between parenthe~-
ses inv integer z and vni integer z. Since this test and these inva-
riant declarations are obviously redundant we shall cmit (or we shall
not insert) them for the benefith of the readability of our programs.
In the same step we perform the appropriate arithmetical transforma-
tions.

P5: pre integer n & n =z 1;

while gsn do si z:=2z & g:i=4q is od;

while z>1 do si z:=2:2 & q:=qg:4 is;
$F xz+2xz+qsn then x:=x+z fi od

voi y=z2
post x=intsqr(n) & z=1 & g=z

Since within the scope of the invariant q=z2 the condition z>1 is

2

equivalent to g>1, we may replace the former by the latter in P5
(this transformation is described formally in Sec.6 of Blikle 1977 B):
We also introduce the new identifiers y and p with the invariants
y=n-x2 and p=xz (this tricky choice of invariants only proves that
the discipline of programming must be supported by the art of it).
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Pe: pre igggggz ngmnzl
z:=1;
g:=13
inv g=2%;
while gsn do-si z:=2z g g:=4q is od;
x:=03;
y:i=n;
pP:=0;
inv y=n—x2 & P=Xz;
while g>1 do si z:=z:2 g g:=g:4 g p:=p:2 is;
if 2ptqsy then si x:=x+z & p:=p+q & y:=y-2p-q is £i od
vni yﬁn—x & p=xz
vni g=z
post x=intsgr(n) & z=1 & q=22 & y=n—x2 & p=xz
In the subsequent step we shall remove z from our program. In the
present step we prepare the program for this transformation. Antici-
pating, this transformation consists of the "backward" application of
Theorem 5.1. Therefore we first transform P6 into the form which may
be regarded as the result of the insertion of the invariant z=yg into
some program P where z does not appear. This program P may be regarded,
in turn, as the result_of the removal of z from P6. First, we replace
in Py the condition q=22 by the equivalent condition z=vg§. Next, z is
replaced by v§ everywhere between inv z=vg and vni z=Vg§ except for
the left sides of assignments. Finally the postcondition is simplified
by obvious substitutions and z:=1{ g:=1 is replaced by g:=1; z:=1.

P7: Pre integer n & nz1;
g:=1;
z:=1;
inv z=vqg ;
while gsn do si z:=2vg & g:=4g'is od;
x:=0;
y:i=n;
p:=0;
iny y=n-x° & p=xvg;
while g>1 do si z:=vg = 2 g q:=g+4s p:=p:2 is;
'Af 2p+qsy then si X:=x+VQ & Pr=p+q & v:=y-Zp-g is £i od
vni y=n-x" & p=xvqg
vni z=yg '
post x=intsgr(n) & z=1 g g=1 & y=n—x2 & p=x

In this program z is an independent variable in the sense that it
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does not appear neither in conditions nor in those assignments which

modify the rémaining variables. Since we are not interested in the

-final value of z we remove it from P7. As was mentioned earlier we do
it by the backward application of Theorem 5.1. Indeed, P, may Pe re—

garded as the result of the insertion of z with z=yg§ into the follo-—
wing program:

Fg: pre integer ng nz1;

: g:=1;
while g=n do g:=4q od;
X:i=0;

inv‘y=n—x2 & P=xXVG : y :
while g>1 do si q:=g:4 g p:=p:2 is;
if 2p+gs<n then Si X:=x+yq g p:=ptqg g Y:=y-2p-q is fi od

vni y=n—x2 & P=xVg

post z=intsqr(n) & g=1 & y=n-xz'& p=x
Observe that in our postcondition the condition x=intsqr(n) g p=x may
be replaced by p=intsqr(n) & x=p. Now, it turns out that x may be re-
moved from P8 in the same way as we have removed z from P?' We get
PQ: Ere_integer-n'& ne

i=1;
while gsn do q:=4q od;
yi=n; -
p:=0;
inv y=n-(p® : q);
while g>1 do si gq:=q:4 g p:=p:Z is;
if 2ptqgy then si p:i=p+q & y:=y-2p-q is £i od
vni y=n-(p® : q) =
post p=intsqr(n) g g=1 & y=n-(p> : q)
In the last step we shall make the following transformations: First we
remowe the redundant declarations of y=n—(92 + gq). Second, we replace
the instruction si q:=g:4 & p:=p:2 is by the eguivalent instruction
9i=g+d; p:=p:2. Third, we replace the instructiqn

Pt=p+2 ; if 2piq<y then si p:=p+q & y:=y-2p-q is fi
by the equivalent instruction
if p#gszy then 8l p:=(p:2)+g & y:=y-p—q is else p:=p:2 fi

This equivalence may be proved easily using the calculus shown in
Blikle (1977 C). Firth, we replace si p:=(p+2)+q g y:=y-p-q is by
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Y:=y-p~q ; p:=(p32)+g. We get in this way

P1O: pre integer n & nz1

g:=1;
while gs=n do g:=4q od;
y:=n;
p:=0;

while g>1 do g:=g:4;
if ptgsy then y:=y~p-g; p:=(p:2)}+q else p:=p:2 fi od
post p=intsqr(n) & g=1 & y=n-(p>:q)
This is the final version of our (Dahl's) program. On the strength of
theorems justifying the transformations which conducted us: -to P10,
this program is correct (i.e. totally correct).

8. AN EXAMPLE OF THE TRANSFORMATION OF A PROGRAM FROM ONE DATA TYPE
INTO ANOTHER

In this section we shall transform the program P10 from Sec.7 into an
analogous program dealing with binary representations of integers.

Let BR denote the set of all binary strings of the form O or 1X

3
where X€{0,1}. We shall use the following functions and relations
in BR. Let X,Y,%Z,... denote variables ranging over BR.

(1) shift left, SL : BR —+ BR <
- SL(0).= 0O
= BL(X).= X0 for X £ 0
(2) shift right, SR : BR =+ BR
= SR(Q) =0
- SR(X0) = SR(X1) = X for x # 0

{3) arithmetical operations + and -, for simplicity we shall

use the same symbols as for Operations on integers.

(4) lexicographical ordering [— and the corresponding "less or
equal' L= |

(5) birep X iff X € BR

We shall also need conversion functions . int : BR — INT and
br : INT — BR defined in the usual way. The following equations
are true for X,Y € BR and X.y-= G

(6) int{br(x)) = x , br(int(x)) = x
(7) br(2x) = SL(bx(x))
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(8) br(x:2) = SR(br(x)) (10) x <y iff br(x)[= br(y)
(9) br(x+y) = br(x)zbr(y) () x 27y " ITE “BedX)Em bri(y)

Now, consider program P10 of Sec.7. We shall replace its precondition
by integer n & n 2 1 & N=br {n) and introduce new variables Q, ¥ and P
with the invariants O=br(qg), ¥=br(y) and P=br(p). We also omit
y=n—(p2eq) in the postcondition.

Pyq: pre integer n & nzl & N=br(n)
g:=1; Qs="'1":
inv Q=br (g);
while gsn do si g:=4q & Q:=SL(SL(Q)) is od;
y:=n; p:=0; : :
X:=N; P:='0"';
inv ¥Y=br(y) & P=br(p):
while g>1 do si g:=g:4 & Q:={SR(SR(Q)) is; ;
if ptgsy then si y:=y-p+tq & Y:=Y-P+Q is:
8i p:=(p:2)+g & P:=SR(P)+0 is
else si p:=p:2 & P:=SR(P) is
£i
od
vni Y=br(y) & P=br(p)
vni Q=br(g)
post p=intsgr(n) & g=1 & g=br(g) & P=br(p) & Y=br(y)

Now, we perform local transformations preparing our program for the
removal of g, y and p. First we replace the precondition by the
equivalent one: birep N & '1'C”N & n=int (N). Next, we replace the
conditions in integers by equivalent conditions in binary strings.
Finally, we transform the declarations of invariants into respecti-
vely g=int(Q), y=int{Y¥) and p=int (P) and perform the obvious substi-
tutions in the postcondition. Now, we remove g, ¥ and p by Theorem
5.1. We also remove the unnecessary condition n=int(N) from the pre-
condition. In this way we get %
Pys: pre birep N & '1'[C N;
='1';

while QE-N do Q:=SL(SL{Q)) od;

Y:=N; P:='0"';

while '1'[C Q do Q:=SR(SR(Q));

if PHOL_Y then Y:=Y-P+Q; P:=SR(P)+Q
else P:=SR(P) fi od
POSt P=br(intsgr{int(N))) & Q = '3!
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. 9. FINAL REMARKS

As was already mentioned in the Introduction the present method has
'been only sketched in this paper. First of all the given list of
transformations, even if extended by the transformations of Blikle
(1977 B), is rather limited. Secondly, our programs contain only glo-
bal variables which is an essential limitation at least in the case
where one wants to éxtend apl by recursive procedures.

The option of having global and local variables may be introduced if
we slightly change the concept of the state in Sec.2. Namely, instead
of defining states as functions s: IDE —+ D we extend them to
functions s:IDE — D*, where D* denotes the set of all finite

strings over D including the empty string e. The elements of D may
be interpreted as staks of values having the current (available) value
on the top. The function Int:EXP — [S — D] must be redefined in
the following way: for any xEIﬁE: Int({x) (s) = TOP(s(x)). The remaining
part of the definition is analogous. The fact that Int(x)(s) = ¢

means that the value of x in s is undefined. The work on the exten-

sion of apl in this direction is in progress.
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